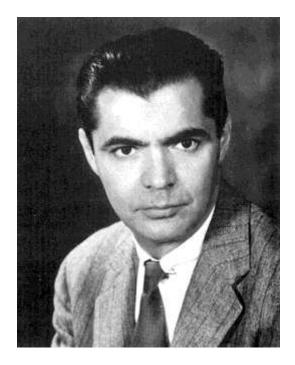
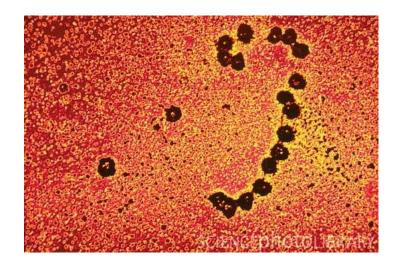

Ribosomes

Sk Abu Raihan Abdullah M.Tech, BT, 2nd sem, NITMAS


What are Ribosomes?

- Cell have tiny granular structures known as Ribosomes
- Ribosomes are Ribonucleo-Protein Particles
- Ribosomes serves as workbenches, with mRNA acting as the blueprint in the process of protein synthesis



Palade was the first person to study them in 1955

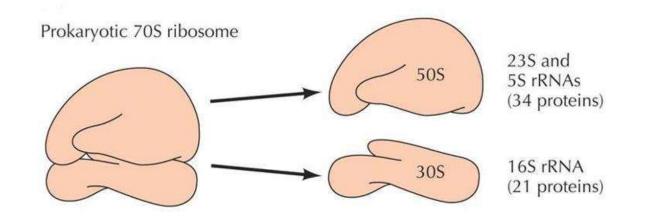
Number

 The number of Ribosomes differs greatly
 A rapidly growing E.coli cell may have as many as 15,000 to 20,000 ribosomes, about 15% of the cell mass

Types of Ribosomes

- Matrix Ribosomes: These synthesize proteins destined to remain within the cell
- Plasma Membrane Ribosomes: These make proteins for transport to the outside

Domains of Ribosomes


- There are two domains of Ribosomes
- <u>Translational Domain</u>: The region responsible for translation is called the Translational domain
- Both subunits contribute to this domain, located in the upper half of the small subunit and in the associated areas of the large subunit
- Exit Domain: The growing peptide chain emerges from the large subunit at the exit domain
- This is located on the side of the subunit

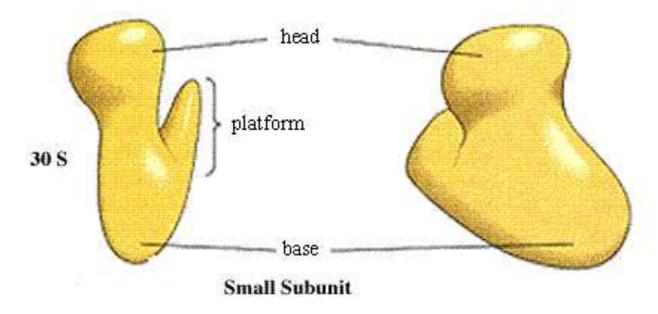
Dimensions of Ribosomes

- Prokaryotic Ribosomes are commonly called 70S Ribosomes
- These have dimensions of about 14 to 15nm by 20nm
- A Molecular Weight of approximately 2.7 million daltons(2.7×10⁶ daltons)
- These are constructed of a 50S and a 30S subunit

Structure of Ribosomes

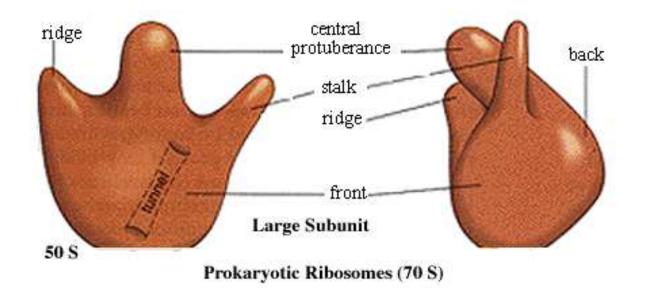
- Ribosomes are not bounded by membrane
- Prokaryotic Ribosomes are smaller and less dense than Eukaryotic Ribosomes
- Ribosomes are composed of two subunits, each of which consists of protein and a type of RNA called Ribosomal RNA (rRNA)

Ribosomal Subunits


- Each subunit is constructed from one to two rRNA molecules and many polypeptides
- 30S smaller Subunit
- 50S larger Subunit

Svedberg Unit

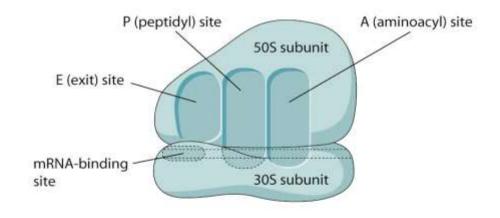
- The S in 70S and similar values stand for Svedberg units
- The faster a particle travels when centrifuged, the greater its Svedberg value or Sedimentation coefficient
- The sedimentation coefficient is a function of a particles molecular weight, volume and shape
- Heavier and more compact particles normally have larger Svedberg numbers or sediment faster

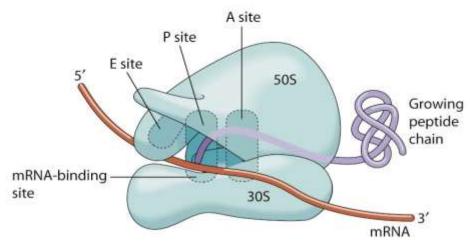

30S Subunit

- 30S Subunit is smaller and has a molecular weight of 0.9×10⁶ daltons
- It is made up of 16S rRNA and 21 Polypeptide chains

50S Subunit

- The 50S subunit is larger one and has a molecular weight of about 1.8×10⁶ daltons
- It consists of 5S rRNA, 23S rRNA and 34
 Polypeptide chains




Ribosomal RNA and its Role

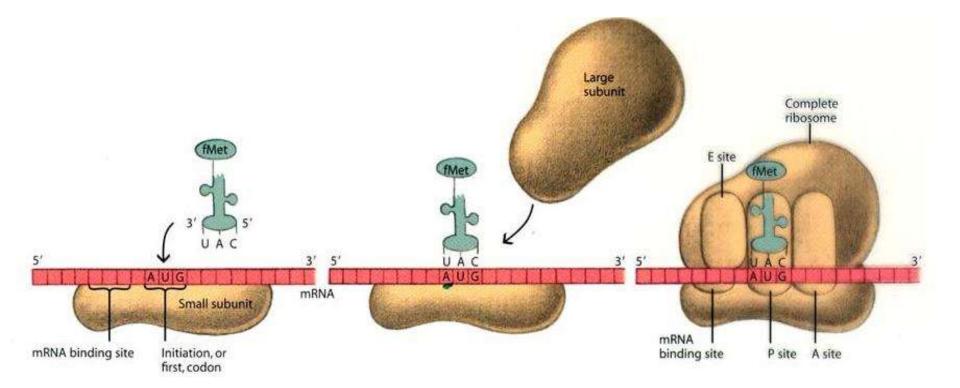
- rRNA is transcribed from certain portions of DNA by the same energy-requiring process used for the synthesis of mRNA and tRNA
- rRNA is thought to have two roles
- i. The 16S rRNA of the 30S subunit may aid in the initiation of protein synthesis
- The 3` end of the 16S rRNA complexes with an initiating signal site on the mRNA and helps position the mRNA on the ribosome
- ii. 16S rRNA binds initiation factor-3 and the 3 CCA end of aminoacyl-tRNA

Sites of Ribosome

- The ribosome has three sites for binding tRNA
- The Peptidyl or Donor site (the P site)
- The Aminoacyl or Acceptor Site (the A site)
- The Exit Site (the E site)

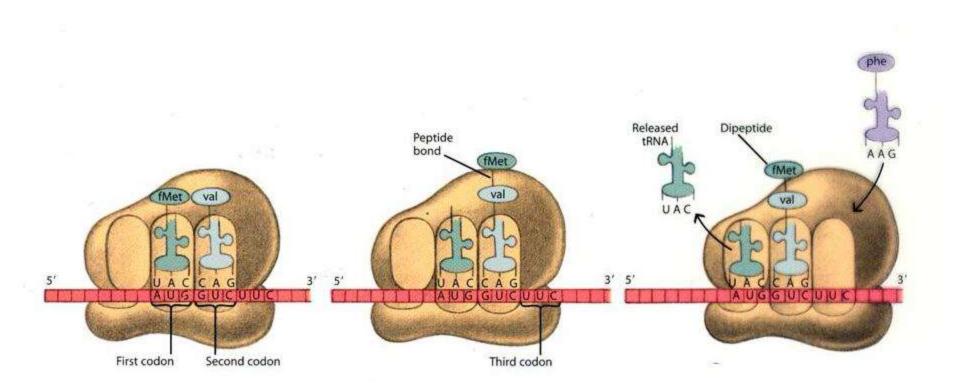
Copyright © 2009 Pearson Education, Inc.

Function of Ribosomes

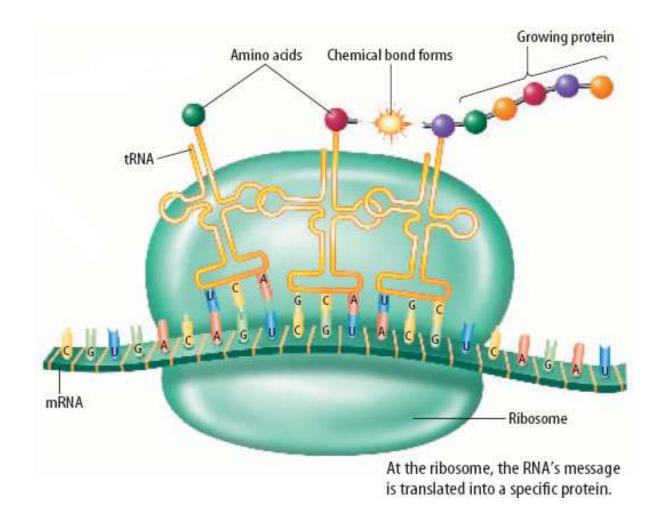

- The Ribosome is involved in the process of Protein Synthesis
- Protein Synthesis is divided into three stages:
- 1. Initiation
- 2. Elongation
- 3. Termination

1. Initiation

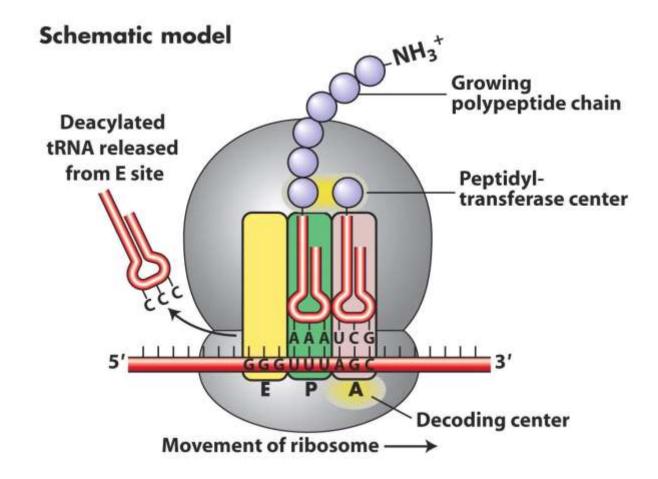
The necessary Components Assemble:


- i. The two ribosomal subunits
- ii. A tRNA with the anticodon UAC
- iii. The mRNA molecule to be translated
- iv. Along with several additional protein factors
- In E.coli and most bacteria translation begin with specially modified aminoacyl tRNA, Nformylmethionyl tRNA
- Because the α-amino is blocked by a formyl group, this aminoacyl tRNA can be used only for initiation
- This N-formýlmethionyl-tRNA attaches itself to the P Site of ribosome(Peptidyl Site)

- mRNA have a special "Initiation Codon" (AUG) that specifically binds with the fMettRNA anticodon
- Finally, the 50S subunit binds to the 30S subunit mRNA, forming an active ribosomemRNA complex
- The attachment of two Subunits is controlled by Mg⁺² ions



2. Elongation


- At the beginning of elongation cycle, the Peptidy Site (P Site) is filled with Nformymethionyl-tRNA and aminoacyl(A Site) with Exit Site(E Site) are empty
- <u>Aminoacyl-tRNA Binding</u>: The next codon is located with A site and is ready to direct the binding of an aminoacyl-tRNA
- GTP and Elongation factor donate the aminoacyl-tRNA to ribosomes

- Transpeptidation Reaction: Peptidyl transferase, located on 50S Subunit catalyze the transpeptidation reaction
- The α-amino group of A site amino acid attacks α-carboxyl group of C-terminal amino acid on P site tRNA in this reaction resulting in peptide bond formation
- A specific adenine base seems to participate in catalyzing peptide bond formation

- <u>Translocation</u>: Movement of Ribosome on mRNA is called Translocation
- There are three Phases of Translocation
- The peptidyl-tRNA moves from the A site to P site
- 2. The ribosome moves one codon along mRNA so that a new codon is positioned in the A site
- 3. The empty tRNA leaves the P site
- Translocation requires GTP and elongation factor complex to proceed

3. Termination

- Protein Synthesis stops when the ribosomes reaches one of three special non-sense codons- UAA, UAG, UGA
- Three release factors(RF-1, RF-2, RF-3) aid the ribosomes in recognizing these codons
- After the ribosome has stopped, peptidyl transferase hydrolyzes the peptide free from its tRNA, and the empty tRNA is released
- GTP hydrolyzes required for this process
- Next the ribosome dissociates from its mRNA and separates into 30S and 50S subunits. IF-3 binds to 30S subunit and prevent it from re-associating with 50S subunit till next initiation starts

Effect of Antibiotics on Protein Synthesis

- Several antibiotics work by inhibiting protein synthesis on prokaryotic ribosomes
- Antibiotics such as Streptomycin and gentamicin attach to the 30S subunit and interfere with protein synthesis
- Other Antibiotics, such as Erythromycin and Chloramphenicol, interfere with protein synthesis by attaching to the 50S subunit

Point to Ponder

 Because of differences in prokaryotic and eukaryotic ribosomes, the microbial cell can be killed by the antibiotic while the eukaryotic host cell remains unaffected Thank You